A Novel Regularized Principal Graph Learning Framework on Explicit Graph Representation

نویسندگان

  • Qi Mao
  • Li Wang
  • Ivor W. Tsang
  • Yijun Sun
چکیده

Many scientific datasets are of high dimension, and the analysis usually requires visual manipulation by retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are not self-intersected, which is quite restrictive for real applications. A few methods can overcome the above problem, but they either require complicated human-made rules for a specific task with lack of convergence guarantee and adaption flexibility to different tasks, or cannot obtain explicit structures of data. To address these issues, we develop a new regularized principal graph learning framework that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that can learn a spanning tree or a weighted undirected `1 graph are proposed, and a new learning algorithm is developed that learns a set of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then extend the proposed framework to deal with largescale data. Experimental results on various synthetic and six real world datasets show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph regularized seismic dictionary learning

A graph-based regularization for geophysical inversion is proposed that offers a more efficient way to solve inverse denoising problems by dictionary learning methods designed to find a sparse signal representation that adaptively captures prominent characteristics in a given data. Most traditional dictionary learning methods convert 2D seismic data patches or 3D data volumes into 1D vectors fo...

متن کامل

Adversarially Regularized Graph Autoencoder

Graph embedding is an e‚ective method to represent graph data in a low dimensional space for graph analytics. Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data, but they have mostly ignored the data distribution of the latent codes from the graphs, which o‰en results in inferior embedding in real-worl...

متن کامل

dominating subset and representation graph on topological spaces

Let a topological space. An intersection graph on a topological space , which denoted by ‎ , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of  and graph properties of ‎  are investigated. Also some classifications and representations for the graph ...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

آموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک

In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1512.02752  شماره 

صفحات  -

تاریخ انتشار 2015